18.152 PROBLEM SET 6

due May 6th 10am.

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Let $u: \mathbb{R}^{3} \times[0,+\infty) \rightarrow \mathbb{R}$ be a solution to the global Cauchy problem

$$
\begin{array}{ll}
u_{t t}=\Delta u & x \in \mathbb{R}^{3}, t \geq 0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x) & x \in \mathbb{R}^{3},
\end{array}
$$

where g, h are smooth. Suppose that there exists some large constant R such that $g(x)=h(x)=0$ for $|x| \geq R$. Show that there exists some large constant C depending on $R, g, \nabla g$,h such that

$$
|u(x, t)| \leq C / t
$$

holds for $t>0$.
Hint: Use the Kirchhoff's formula.

Problem 2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, and $0<p<q$. Show that there exists some constant C only depending on p, q and the volume of Ω such that

$$
\|f\|_{L^{p}(\Omega)} \leq C\|f\|_{L^{q}(\Omega)}
$$

holds for any function $f: \Omega \rightarrow \mathbb{R}$ such that $|f|^{p}$ and $|f|^{q}$ are integrable.

Problem 3. Let $u: \mathbb{R}^{6} \times[0,+\infty) \rightarrow \mathbb{R}$ be a solution to the global Cauchy problem

$$
\begin{array}{ll}
u_{t t}=\Delta u & x \in \mathbb{R}^{6}, t \geq 0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x) & x \in \mathbb{R}^{6},
\end{array}
$$

where g, h are smooth. Suppose that there exists some large constant R such that $g(x)=h(x)=0$ for $|x| \geq R$. Establish a bound for $|u(x, t)|$ in terms of t, R, g, h and the first or higher order derivatives of g, h.

Hint: Energy estimate.

Problem 4. We recall the sequence $\left\{\left(w_{i}, \lambda_{i}\right)\right\}_{i=1}^{\infty}$ of the Dirichlet Laplace eigenpairs introduced in Lecture $9(B)$. Suppose $\int_{\Omega} w_{i} w_{j} d x=0$ for $i \neq j .{ }^{1}$ Let $g, h \in C^{\infty}(\bar{\Omega})$ satisfy $g=h=0$ on $\partial \Omega$, and we define

$$
u^{k}(x, t)=\sum_{i=1}^{k} g_{i} \cos \left(\lambda_{i}^{\frac{1}{2}} t\right) w_{i}(x)+\lambda_{i}^{-\frac{1}{2}} h_{i} \sin \left(\lambda_{i}^{\frac{1}{2}} t\right) w_{i}(x),
$$

where

$$
g_{i}=\left\langle g, w_{i}\right\rangle_{L^{2}}=\int_{\Omega} g(x) w_{i}(x) d x, \quad h_{i}=\left\langle h, w_{i}\right\rangle_{L^{2}}=\int_{\Omega} h(x) w_{i}(x) d x .
$$

Notice that $u^{k}(x, t)$ is a solution to the wave equation with zero Dirichlet data. Moreover, $\lim _{k \rightarrow+\infty}\left\|g-u^{k}\right\|_{L^{2}}=\lim _{k \rightarrow+\infty}\left\|h-u_{t}^{k}\right\|_{L^{2}}=0$.
(1) Show that the following holds for each $t \geq 0$.

$$
\left\|\nabla u^{k}(\cdot, t)\right\|_{L^{2}}^{2} \leq\|\nabla g\|_{L^{2}}^{2}+\|h\|_{L^{2}}^{2} .
$$

(2) Show that

$$
\lim _{\min \{k, l\} \rightarrow+\infty} \sup _{t \geq 0}\left\|\nabla u^{k}(\cdot, t)-\nabla u^{l}(\cdot, t)\right\|_{L^{2}}=0 .
$$

(3) Briefly explain why the limit $u(x, t)=\lim _{k \rightarrow+\infty} u^{k}(x, t)$ is a smooth solution to the wave equation satisfying $u=0$ on $\partial \Omega, u(x, 0)=g(x)$, and $u_{t}(x, 0)=h(x)$.

[^0]
[^0]: ${ }^{1}$ See lecture $10(\mathrm{~A})$ where we discuss why we can assume this orthogonality condition.

